4,047 research outputs found

    Quantum switching networks for perfect qubit routing

    Full text link
    We develop the work of Christandl et al. [M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, and A. J. Landahl, Phys. Rev. A 71, 032312 (2005)], to show how a d-hypercube homogenous network can be dressed by additional links to perfectly route quantum information between any given input and output nodes in a duration which is independent of the routing chosen and, surprisingly, size of the network

    Supersymmetry on Graphs and Networks

    Full text link
    We show that graphs, networks and other related discrete model systems carry a natural supersymmetric structure, which, apart from its conceptual importance as to possible physical applications, allows to derive a series of spectral properties for a class of graph operators which typically encode relevant graph characteristics.Comment: 11 pages, Latex, no figures, remark 4.1 added, slight alterations in lemma 5.3, a more detailed discussion at beginning of sect.6 (zero eigenspace

    Development, fabrication and test of a high purity silica heat shield

    Get PDF
    A highly reflective hyperpure ( 25 ppm ion impurities) slip cast fused silica heat shield material developed for planetary entry probes was successfully scaled up. Process development activities for slip casting large parts included green strength improvements, casting slip preparation, aggregate casting, strength, reflectance, and subscale fabrication. Successful fabrication of a one-half scale Saturn probe (shape and size) heat shield was accomplished while maintaining the silica high purity and reflectance through the scale-up process. However, stress analysis of this original aggregate slip cast material indicated a small margin of safety (MS. = +4%) using a factor of safety of 1.25. An alternate hyperpure material formulation to increase the strength and toughness for a greater safety margin was evaluated. The alternate material incorporates short hyperpure silica fibers into the casting slip. The best formulation evaluated has a 50% by weight fiber addition resulting in an 80% increase in flexural strength and a 170% increase in toughness over the original aggregate slip cast materials with comparable reflectance

    Using Wave-Packet Interferometry to Monitor the External Vibrational Control of Electronic Excitation Transfer

    Full text link
    We investigate the control of electronic energy transfer in molecular dimers through the preparation of specific vibrational coherences prior to electronic excitation, and its observation by nonlinear wave-packet interferometry. Laser-driven coherent nuclear motion can affect the instantaneous resonance between site-excited electronic states and thereby influence short-time electronic excitation transfer (EET). We first illustrate this control mechanism with calculations on a dimer whose constituent monomers undergo harmonic vibrations. We then consider the use of nonlinear wave-packet interferometry (nl-WPI) experiments to monitor the nuclear dynamics accompanying EET in general dimer complexes following impulsive vibrational excitation by a sub-resonant control pulse (or control pulse sequence). In measurements of this kind, two pairs of polarized phase-related femtosecond pulses following the control pulse generate superpositions of coherent nuclear wave packets in optically accessible electronic states. Interference contributions to the time- and frequency-integrated fluorescence signal due to overlaps among the superposed wave packets provide amplitude-level information on the nuclear and electronic dynamics. We derive the basic expression for a control-pulse-dependent nl-WPI signal. The electronic transition moments of the constituent monomers are assumed to have a fixed relative orientation, while the overall orientation of the complex is distributed isotropically. We include the limiting case of coincident arrival by pulses within each phase-related pair in which control-influenced nl-WPI reduces to a fluorescence-detected pump-probe difference experiment. Numerical calculations of pump-probe signals based on these theoretical expressions are presented in the following paper

    dRail: a novel physical layout methodology for power gated circuits

    No full text
    In this paper we present a physical layout methodology, called dRail, to allow power gated and non-power gated cells to be placed next to each other. This is unlike traditional voltage area layout which separates cells to prevent shorting of power supplies leading to impact on area, routing and power. To implement dRail, a modified standard cell architecture and physical layout is proposed. The methodology is validated by implementing power gating on the data engine in an ARM Cortex-A5 processor using a 65nm library, and shows up to 38% reduction in area cost when compared to traditional voltage area layou

    Functional centrality in graphs

    Full text link
    In this paper we introduce the functional centrality as a generalization of the subgraph centrality. We propose a general method for characterizing nodes in the graph according to the number of closed walks starting and ending at the node. Closed walks are appropriately weighted according to the topological features that we need to measure

    Some Exact Results on the Potts Model Partition Function in a Magnetic Field

    Full text link
    We consider the Potts model in a magnetic field on an arbitrary graph GG. Using a formula of F. Y. Wu for the partition function ZZ of this model as a sum over spanning subgraphs of GG, we prove some properties of ZZ concerning factorization, monotonicity, and zeros. A generalization of the Tutte polynomial is presented that corresponds to this partition function. In this context we formulate and discuss two weighted graph-coloring problems. We also give a general structural result for ZZ for cyclic strip graphs.Comment: 5 pages, late

    Deep water periodic waves as Hamiltonian relative equilibria

    Get PDF
    We use a recently derived KdV-type of equation for waves on deep water to study Stokes waves as relative equilibria. Special attention is given to investigate the cornered Stokes-120 degree wave as a singular solution in the class of smooth steady wave profiles

    Divergences in QED on a Graph

    Full text link
    We consider a model of quantum electrodynamics (QED) on a graph. The one-loop divergences in the model are investigated by use of the background field method.Comment: 14 pages, no figures, RevTeX4. References and typos adde
    • …
    corecore